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Abstract: In  this  work,  two  process-variation-tolerant  schemes  for  a  current-mode  sense  amplifier  (CSA)  of  RRAM  were  pro-
posed: (1) hybrid read reference generator (HRRG) that tracks process-voltage-temperature (PVT) variations and solve the nonlin-
ear  issue  of  the  RRAM  cells;  (2)  a  two-stage  offset-cancelled  current  sense  amplifier  (TSOCC-SA)  with  only  two  capacitors
achieves a double sensing margin and a high tolerance of device mismatch. The simulation results in 28 nm CMOS technology
show  that  the  HRRG  can  provide  a  read  reference  that  tracks  PVT  variations  and  solves  the  nonlinear  issue  of  the  RRAM  cells.
The proposed TSOCC-SA can tolerate over 64% device mismatch.
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1.  Introduction

Resistive  random  access  memory  (RRAM)  has  been  stud-
ied as a promising candidate for the next generation of embed-
ded non-volatile  memory  due to  its  advantages  such as  high
scalability, low power consumption, high speed and non-volat-
ility[1, 2].  However,  the  practical  application  of  RRAM  at  ad-
vanced technology nodes is challenged by a limited sensing mar-
gin[3].  The  sense  amplifier  (SA)  needs  to  tolerate  the  increas-
ing  mismatch  of  devices.  A  read  reference  that  tracks  pro-
cess  and  temperature  variations  is  also  essential[4−6].  Several
offset-cancellation  techniques  have  been  proposed  to  re-
duce  the  device  mismatch  and  improve  the  sensing  mar-
gin[7−9].  However,  only  the  first  stage  (current-sampling)  or
the second stage (latch) of the SA was calibrated. In addition,
multi  capacitors  in  the offset-cancellation circuits  also incur  a
remarkable  area  overhead.  Moreover,  the  nonlinearity  of
RRAM  cells  has  not  been  considered  in  previous  dummy-cell
read references.

In  this  work,  a  two-stage  offset-cancelled  current  sense
amplifier  (TSOCC-SA)  with  only  two  capacitors  is  proposed.
Two  capacitors  are  used  to  maximize  the  sensing  margin  of
RRAM and the tolerance of device mismatch. In addition, a hy-
brid read reference generator (HRRG) is  designed by combin-
ing  RRAM  cells  and  linear  resistors  to  provide  a  read  refer-
ence that  can track PVT variations and solve the nonlinear  is-
sue of the RRAM cells.

2.  RRAM cell and its nonlinearity

The structure of the 1T1R RRAM cell used in this study in-
cludes an NMOS switch transistor and a TaOx-based bipolar res-
istor  memory device. Fig.  1 shows the cross-section transmis-
sion  electron  microscope  (TEM)  images  of  the  fabricated
RRAM  cells  in  the  28  nm  CMOS  process.  The  RRAM  is  fabric-
ated at the back end of line (BEOL) process and is fully compat-
ible with the logic process[10].

The schematic of the 1T1R RRAM cell is shown in Fig. 2, in-
cluding the word line (WL) used to select the cell,  and the bit
line  (BL)  and  source  line  (SL)  used  to  apply  the  correspond-
ing  operation  voltage.  A  fresh  RRAM  cell  is  in  an  initial  state
with  extremely  high  resistance[11] and  requires  a  one-time
forming  process  to  form  a  large  number  of  conductive  fila-
ments  (CFs)  as  shown  in Fig.  2(a).  After  the  forming  process,
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the  RRAM  cell  is  in  a  low  resistance  state  (LRS)  as  shown  in
Fig.  2(b).  The  reset  operation  is  shown  in Fig.  2(c).  A  reset
voltage (VReset)  is  applied to  the RRAM cell  from the SL  to  BL.
The  reset  operation  ruptures  the  formed  CFs,  making  the
RRAM  cell  from  the  LRS  to  the  high  resistive  state  (HRS).  In
the  set  operation,  a  set  voltage  (VSet)  is  applied  to  the  RRAM
cell from the BL to SL and CFs form again to make the cell in-
to an LRS[12].

In the read operation,  a  small  read voltage (Vread is  much
lower than set voltage) is applied to the BL and then the CSA
detects the current in the read path to determine the state of
the  cell  resistance.  The Vread applied  to  the  BL  will  cause  the
migration of a small number of oxygen atoms. Then the distri-
bution  of  oxygen  vacancies  inside  the  RRAM  cell  is  changed
and  the  resistance  of  RRAM  cells  exhibits  nonlinearity.  As
shown  in Fig.  3,  the  ideal  linear I–V curve  of  HRS  and  LRS  is
not exactly consistent with the measured I–V curve.

Table  1 shows  the  operating  conditions  of  the  1T1R
RRAM cell used in this study. The RRAM cell has a large resist-
ance variation (R-variation). R-variation leads to the wide distri-
bution  of  cell  current  (Icell)  and  references  current  (Iref)  that

will  cause sensing yield issues[13].  Therefore,  for  an SA,  a  read
reference that tracks process and temperature variations is es-
sential.

3.  Hybrid read reference generator

The previous dummy reference cell structures of the Seri-
al-Parallel (SP) scheme[14], Parallel-Series Reference Cell (PSRC)
scheme[15],  and  the  proposed  hybrid  read  reference  generat-
or  (HRRG)  are  shown  in Fig.  4.  The  HRRG  adopts  the  Parallel-
Series structure like the PSRC scheme. Besides, several dynam-
ic-reference sensing schemes have been proposed to maxim-
ize the sensing margin[16−18].  Nevertheless, the dynamic-refer-
ence  sensing  schemes  are  always  accompanied  by  higher
power consumption and area overhead.

The average of HRS RRAM cell  and LRS RRAM cell  is  used
as the reference in the SP scheme, and the Isp is as Eq. (1). 

Isp =
Vread
Rsp

=
Vread(RL + RH) || (RL + RH) = Vread

RL + RH
. (1)

Fig. 5 shows the simulated reference current (Iref) distribu-
tions of conventional reference schemes and the proposed hy-
brid  read  reference,  not  considering  the  nonlinearity  of  the
RRAM  cell.  The  ideal  reference  for  CSA  should  be  the  mid-
point  current  of  the  two  neighboring  memory  states  (IMP).
The  reference  current  generated  by  SP  schemes  is  closer  to
the  current  of  HRS  (IHRS)  and  the  existing  overlap  may  cause
sensing failure with PVT variations. The reference current gen-
erated by PSRC (IPSRC)  and the proposed HRRG (IHRRG)  is in the
middle of IHRS and ILRS, as shown in Eq. (2). 

Table 1.   RRAM cell operating conditions.

Level Forming Set Reset Read

WL VG_Forming (1.8 V) VG_Set (1.0 V) VG_Reset (1.5 V) VDD (1.8 V)
BL VForming (2 V) VSet (0.68 V) 0 Vread (0.3 V)
SL 0 0 VReset (1.0 V) 0
State LRS(RL) LRS(RL) HRS(RH) “1”/”0”
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Fig. 2. (Color online) RRAM cell basic operations: CFs forming, Reset and Set.
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Ips =
Vread(RL||RH) + (RL||RH) = Vread (RL + RH)

RLRH
=
ILRS + IHRS


.

(2)

This is very close to the ideal reference for the CSA. In addi-
tion, as shown in Fig. 5, the HRRG can achieve a narrower distri-
bution  compared  with  the  PSRC.  Specifically,  the  HRRG  re-
duces  the σ-IREF by  49%  compared  with  the  PSRC  scheme.
The  difference  between  the  proposed  HRRG  and  the  previ-
ous PSRC scheme is that the pair of parallel RRAM cells in the
PSRC scheme is replaced by linear resistors to solve the nonlin-
ear issue of RRAM cells, as shown in Fig. 4. The two linear resist-
ors are trimmed close to HRS and LRS of RRAM cells,  respect-
ively.  Assuming  that  the  four  linear  resistors  are  used  in  HR-
RG,  the  reference  current  with  the  most  narrower  distribu-
tion  range  can  be  obtained.  However,  it  will  not  be  able  to
track the PVT variations of the RRAM cell.

As shown in Fig. 3, the resistance of the RRAM cell is non-
linear.  The  voltage  falling  on  two  pairs  of  parallel  resistors  is
about Vread/2  according  to  Ohm’s  law.  Therefore,  the  expres-
sion  of  the  actual  currents  of  the  PSRC  scheme  and  the  HR-
RG scheme can be described as Eq. (3). 

Ips_real = ILRS∣Vread/ + IHRS∣Vread/. (3)

Taking  into  account  the  nonlinearity  of  the  RRAM  cell,
Fig.  3 shows  the  measured ILRS and IHRS which  are  25%  and
70% lower than the ideal  value at  a  read voltage of  0.3  V,  re-
spectively.  Hence,  the  actual  value  of  the IMP is  18.4%  lower
than the ideal value of the IMP. The IPSRC is 14.86% higher than
the  actual  value  of  the IMP calculated  from  the I–V curve  in
Fig.  3.  By  contrast,  the  proposed IHRRG is  only  0.49%  higher
than the actual value of the IMP.

Using  the  proposed  HRRG  scheme,  the  reference  current
shows  a  more  concentrated  distribution  and  is  more  agreed
with the true value of IMP. Hence, the sensing margin is maxim-
ized  and  the  accuracy  of  the  reading  is  improved.  Moreover,
the  latency  of  the  CSA  with  HRRG  is  minimum  compared
with the CSA with SP or PSRC, as shown in Fig. 6.

4.  Two-stage offset-cancelled current sense
amplifier

A  two-stage  offset-cancelled  current  sense  amplifier
(TSOCC-SA)  with  only  two  capacitors  is  proposed  to  improve
the sensing margin. Fig.  7 shows the schematic of  TSOCC-SA.
The  TSOCC-SA  is  comprised  of a  current-sampling  and  a
latch.  Compared to the previous OCCS-SA in Ref.  [7],  the pro-
posed  TSOCC-SA  uses  two  cross  switches  (S1  and  S2)  for  off-

set-cancellation.  The  switches  (S3  and  S4)  are  used  to  en-
large the sensing margin. Combined with the use of switches
S1, S2, S3, and S4, only one capacitor can realize the function
in  Ref.  [7],  which  significantly  reduces  the  area  of  the  circuit.
The offset cancellation of the second stage of TSOCC-SA is real-
ized by using a similar scheme proposed by Dong[8].

Fig.  8 shows  the  timing  of  TSOCC-SA.  In  P1,  the  outputs
of  the  two  inverters  are  connected  to  their  inputs,  respect-
ively.  The difference between the trip  voltages  of  the two in-
verters  (VTR – VTL)  is  sampled  by  capacitor  C2.  In  P2,  the  out-
puts  of  the  two  inverters  are  reset  to  “0”.  And,  the  input  of
the right inverter becomes “VTR – VTL” while that of the left in-
verter  remains  “0”.  In  P3,  two  diode-connected  transistors
(M1  and  M2)  supply  pre-charge  currents  (Ipre1 and Ipre2)  to  A
and  B  nodes.  After  a  sufficient  pre-charge  time,  the  currents
of M1 and M2 (IM1 and IM2) decrease to near Iref and Icell, regard-
less of  the device mismatch in M1 (M2) as long as Icell and Iref
are  constant  in  P3.  Finally,  the  gate  voltages  (VG1 and VG2)  of
M1  and  M2  are  stored  at  the  left  and  right  ends  of  capacitor
C1,  respectively.  In  P4,  the  four  switches  (S5–S8)  are  turned
off and the two switches (S1 and S2) are turned on. The A (B)
node has  a  current  path to  GND through S3 (S4),  resulting in
strong positive feedback. In P5, the latch comparator starts to
work and outputs “1” or “0”.

Fig.  9 shows  the  simulated  waveforms  of  the  CSB-SA[9]

and the proposed TSOCC-SA. TSOCC-SA has a substantial influ-
ence on the sensing margin and performance. In P3, the opera-
tions  of  the  CSB-SA  and  the  TSOCC-SA  are  exactly  the  same.
Four  switches  (S1–S4)  are  turned  on  at  the  beginning  of  P3,
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and  the  CSB-SA  samples Icell and Iref through  these  switches.
Similarly,  the  TSOCC-SA  samples Icell and Iref through  six
switches (S3–S8).  In P4,  the operations of the CSB-SA and the
TSOCC-SA  are  different.  In  the  CSB-SA,  the  four  switches
(S1–S4) are turned off at the beginning of P4. However, in the
TSOCC-SA,  the  double  sensing  margin  switches  (S1–S4)  are
turned  on,  and  the  four  switches  (S5–S8)  are  turned  off.  In
the  CSB-SA,  without  discharge  path,  both VA and VB in  P4
monotonically increase until one of them reaches VDD. In the
TSOCC-SA,  the  M1  (M2)  charges  the  A  (B)  node  with  the
sampled  current Icell (Iref),  while  the  S3  (S4)  discharges  the  A
(B)  node  with  the  current Iref (Icell).  Thus,  the  current  differ-
ence  between  the  A  and  B  nodes  in  the  TSOCC-SA  is  twice
that of the CSB-SA.

Fig.  10(a) shows  the  sensing  margin  development  with
VTH mismatch between M1 and M2.  For  TSOCC-SA,  when the
device  mismatch  reaches  64%  of  the  threshold  voltage,  the

sensing margin is  still  enough,  and the sense amplifier  is  val-
id.  It  clearly shows that the TSOCC-SA has higher offset-toler-
ance than the CSB-SA in Ref. [9].  And the TSOCC-SA can work
at  a  lower  operation  voltage  to  reduce  power  consumption
by  introducing  offset-cancellation  techniques,  as  shown  in
Fig.  10(b).  In  addition,  when  the  mismatch  between  M1  and
M2  exceeds  225  mV,  the  swing  between  A  and  B  is  lower  or
even only tens of  millivolts.  Then,  the mismatch between M4
and M5, M6 and M7 in the latch comparator will lead to the in-
validation  of  SA.  Hence,  it  is  extremely  necessary  to  intro-
duce  the  cross-coupling  capacitor  C2  in  the  latch  comparat-
or  to  cancel  these  device  mismatches,  which  can  further  im-
prove  the  accuracy  of  SA.  Dong et  al.  have  proved  that  the
standard  deviation  of  the  mismatches  is  reduced  by  more
than 60% by C2[8].

Moreover,  the TSOCC-SA avoids excessive area overhead.
In the layout,  the area of the coupling capacitor is  equivalent
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to that of a transistor. Fig. 11 shows the sensing margin of sev-
eral  offset-cancellation  techniques  (CSB-SA[9],  OCCS-SA[7],
SCOC-SA[8],  and  TSOCC-SA)  and  the  extra  area  overhead
caused by the coupling capacitor.

Table 2 shows the performance comparison of several off-
set-cancellation  techniques.  The  area  is  characterized  by  the
number  of  coupling  capacitors  (Caps).  Stage  indicates  that
the mismatch of how many stages of SA can be cancelled. Can-
cellation  ability  indicates  the  percentage  of  the  mismatch
voltage to the threshold voltage that can be tolerated by SA.

5.  Conclusion

In  this  paper,  we  proposed  a  two-stage  offset-cancelled
current  sense  amplifier  (TSOCC-SA)  with  only  two  capacitors
for RRAM at an advanced technology node. A hybrid read re-
ference  generator  (HRRG)  is  designed  by  combining  RRAM
cells  and  resistors  to  provide  a  read  reference  that  tracking
PVT  variations  and  to  solve  the  nonlinear  issue  of  the  RRAM
cells.  The simulation results in the 28 nm CMOS process have
proved  the  effectiveness  of  HRRG  and  the  reliability  of  the
TSOCC-SA.
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